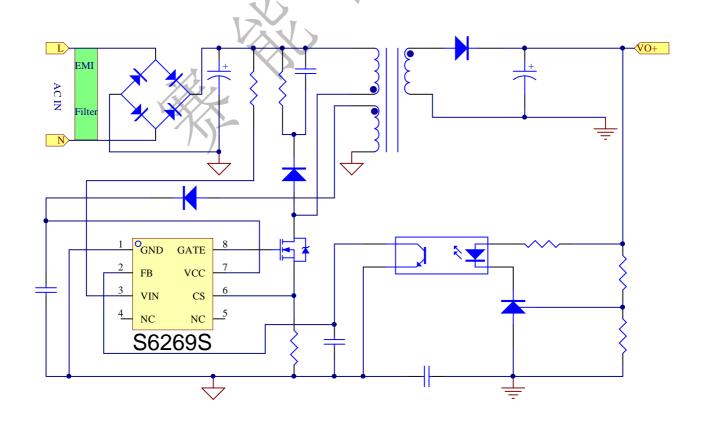
#### **Description**

S6269S is highly integrated current mode PWM control IC for flyback convertor. The maximum output power is up to 80W. S6269S can meet level 6 energy-efficiency standard and EMC requirement easily.

S6269S has comprehensive protection feature to ensure the reliability of system. The packaging form of S6269S has SOP-8.

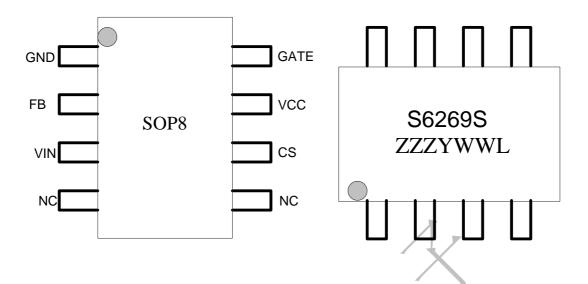
#### **Features**

- H Digit frequency shuffling technology to improve EMI performance.
- ₩ Fixed 65kHz PWM switching frequency.
- **X** Leading-edge blanking on current sense.
- **X** Internal synchronized slope compensation.
- 器 Low standby power consumption (<75mW@AC 230V)


- ₩ Soft-start to reduce MOSFET Vds stress during power on
- **♯** Comprehensive protection function
  - 1. Under voltage locked with hysteresis (UVLO) on VDD.
  - 2. Over voltage protection (OVP) on VDD.
  - 3. Cycle-by-Cycle current limitation.
  - 4. Over load protection (OLP)
  - 5. Over temperature protection (OTP)
  - 6. Current limitation compensation to obtain the same output current in universal ac line input
- # Low start-up current (<10uA@VDD=12V)
- ₩ 300mA of sinking and 150mA of sourcing current capability in GATE pin

#### **Applications**

- **%** Cell Phone Charger
- ₩ Digital Cameras Charger
- ₩ Battery charger


#### **Application Circuit**

Two large value resistors are connected to VCC capacitor in startup circuit.



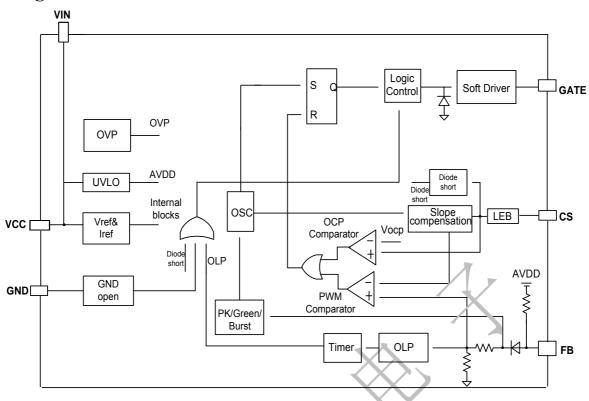
Current mode PWM controller

## Pin Assignment & Marking Information



| ZZZ: | LOT NO                            |  |  |  |
|------|-----------------------------------|--|--|--|
| Y:   | Year code (2021=A,2022=B,2023=C,) |  |  |  |
| WW:  | week code (01-52)                 |  |  |  |
| L:   | FAB code                          |  |  |  |

## **Ordering Information**


|   | Part number | Package | MOQ     |
|---|-------------|---------|---------|
| I | S6269S      | SOP-8   | 4000pcs |

# **Pin Description**

| Pin Number | Symbol | Description               |  |
|------------|--------|---------------------------|--|
| 1          | GND    | Ground.                   |  |
| 2          | FB     | Feedback input pin.       |  |
| 3          | VIN    | Start-up pin              |  |
| 4          | NC     | NC                        |  |
| 5          | NC     | NC                        |  |
| 6          | SENSE  | Current sense input pin.  |  |
| 7          | VDD    | Chip DC power supply pin. |  |
| 8          | GATE   | Totem-pole gate diver.    |  |

Current mode PWM controller

## **Block Diagram**



**Absolute Maximum Rating** 

| Parameter                                     | Value      | Unit |
|-----------------------------------------------|------------|------|
| VDD clamp voltage                             | 44         | V    |
| VDD clamp current                             | 10         | mA   |
| VFB input voltage                             | -0.3 to7   | V    |
| VSENSE input voltage to SENSE pin             | -0.3 to7   | V    |
| Min/Max operating junction temperature        | -55 to 150 | °C   |
| Operating ambient temperature                 | -20 to 85  | °C   |
| Thermal resistance, Junction to ambient SOP-8 | 250        | °C/W |

Note: Stresses above absolute maximum ratings may cause permanents damage to the device. Exposure to absolutely maximum-rated conditions for extended periods may affects device reliability

## **Recommended Operating Conditions**

| Symbol               | Parameter                     | Min. Max. | Unit |
|----------------------|-------------------------------|-----------|------|
| VDD                  | Supply Voltage Vcc            | 9 to 41   | V    |
| Toa                  | Operating Ambient temperature | -20 to 85 | °C   |
| ESD-HM               | Human Model                   | 2         | KV   |
| ESD-MM Machine Model |                               | 150       | V    |

Current mode PWM controller

# **Electrical Characteristics** (T<sub>A</sub> = 25 °C, if not otherwise noted)

|                                      |                                           |                              | Value |      |      |      |  |
|--------------------------------------|-------------------------------------------|------------------------------|-------|------|------|------|--|
| Symbol                               | Parameter                                 | Conditions                   | Min   | Тур  | Max  | Unit |  |
| Supply Voltage (V <sub>dd</sub> Pin) |                                           |                              |       |      |      |      |  |
| Idd_start-up                         | VDD start-up current                      | VDD=12.5V                    |       | 3    | 10   | uA   |  |
| Idd                                  | VDD Operation current                     | VDD=16V, FB=2V               |       | 1.5  |      | mA   |  |
| UVLO(ON)                             | VDD under voltage<br>lockout enter        |                              | 6.8   | 7.8  | 9    | V    |  |
| UVLO(OFF)                            | VDD under voltage lockout exit            |                              | 12.5  | 13.5 | 14.5 | V    |  |
| OVP                                  | VDD over voltage protection               |                              | 41    |      | 43   | V    |  |
|                                      | Voltage F                                 | eedback (FB Pin)             |       |      |      |      |  |
| AVCS                                 | PWM input gain                            | VFB/VSENSE                   |       | 2    |      | V/V  |  |
| VFB_open                             | VFB open loop voltage                     |                              |       | 5.7  |      | V    |  |
| IFB_short                            | FB pin short current                      | Short FB pin to GND          |       | 380  |      | uA   |  |
| VFB_burst                            | Burst mode voltage                        | 4 A                          |       | 1.0  |      | V    |  |
| VTH_PL                               | Power limiting FB threshold voltage       |                              |       | 3.7  |      | V    |  |
| TD_PL                                | Power limiting delay time                 |                              |       | 60   |      | mS   |  |
| DC_MAX                               | Maximum duty cycl                         | VDD=18V, SENSE=0V<br>FB=2.2V |       | 75   |      | %    |  |
|                                      | Current Se                                | ensing (SENSE Pin)           |       |      |      |      |  |
| T_blanking                           | Leading-edge<br>blanking time             |                              | 100   | 310  | 600  | nS   |  |
| ZSENSE_IN                            | Input impedance                           |                              |       | 40   |      | ΚΩ   |  |
| VTH_sense                            | Over current threshold voltage            | Duty=0%                      |       | 0.7  |      | V    |  |
|                                      |                                           | Oscillator                   |       |      |      |      |  |
| Fosc                                 | Normal oscillation frequency              |                              |       | 65   |      | KHz  |  |
| $\Delta f\_temp$                     | Frequency temperature stability           | TA = -20°C to $100$ °C       |       | 5    |      | %    |  |
| f_VDD                                | Frequency voltage stability               | ability VDD=16.5V to 25V     |       | 5    |      | %    |  |
| Fosc_BM                              | Burst mode base frequency                 |                              | 17    | 25   | 28   | KHz  |  |
| $\Delta f\_OSC$                      | Frequency modulation range Base frequency |                              | -5    |      | +5   | %    |  |
| Gate Drive Output                    |                                           |                              |       |      |      |      |  |
| VOL                                  | Output low level                          | VDD=16V, IO=-20mA            |       |      | 0.8  | V    |  |
| VOH                                  | VOH Output high level VDD=16V, IO=        |                              | 10    |      |      | V    |  |
| V_Clamp                              | output clamp voltage level                | 1                            |       | 12   |      | V    |  |
| T_r                                  | T_r Output rising time VDD=16V, CL=1nF    |                              |       | 680  |      | nS   |  |
| T_f                                  | Output falling time                       | VDD=16V, CL=1nF              |       | 40   |      | nS   |  |

# S6269S

Current mode PWM controller

V0.91 Datasheet

#### Application Information

S6269S is a highly integrated PWM control IC for the flyback converter. S6269S is designed specifically for switching power supply that requires level 6 energy-efficiency. The input power is less than 75mW at No-load condition in universal input voltage rang.

#### Start up Control

S6269S has very low start-up current that is less than 10uA. Therefore, a large resistor can be used in start-up circuit of switch power supply. This will minimize standby dissipation. The typical resistance of start-up resistor is 4M ohms.

#### **Operating Current**

The Operating current of S6269S is less than 1.5mA. Therefore, S6269S can have good efficiency.

#### Frequency shuffling for EMI improvement

The frequency Shuffling is implemented in S6269S. The oscillation frequency is modulated with a random source so that the harmonic energy is spread out. The spread spectrum minimizes the conduction EMI and therefore reduces system design challenge.

#### **Burst Mode Operation**

At zero load or light load condition, the main power dissipation in a switching mode power supply is from switching on the MOSFET, the core of transformer and the snubber circuit. The magnitude of power dissipation is proportional to the number of switching frequency within certain period. Less switching frequency can reduce the power dissipation. S6269S adjusts the switching frequency according to the loading condition. The PWM pulse width is kept greater than 1.2uS at any load condition. From light load to no load, the FB voltage drops. While the FB voltage is less than 1.1V, the gate pin output is disabled and kept low, while the FB voltage is higher than 1.2V, the gate output recovers to normal working mode. This is called 'burst mode'. To reduce audio noise, the switching frequency will be kept higher than 20KHz in burst mode.

#### **Oscillator Operation**

The switching frequency is internally fixed at 65kHz. No external frequency setting components are required on PCB design.

## **Current Sensing and Leading-Edge Blanking**

Cycle-by-Cycle current limitation is offered in S6269S. The switching current is detected by a resistor into the SENSE pin. An internal leading-edge blanking circuit chops off the SENSE voltage spike at initial so that the external RC filtering on SENSE pin is no longer required. The current limiting comparator is disabled and thus cannot turn off the external MOSFET during the blanking period. PWM duty cycle is determined by the voltage in the SENSE pin and the FB pin.

## **Internal Synchronized Slope Compensation**

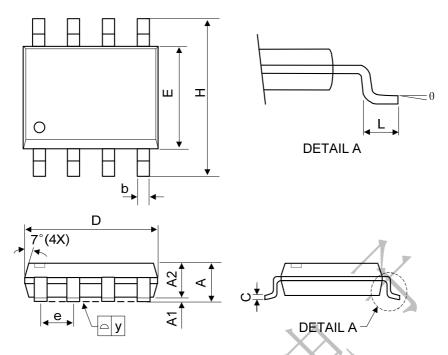
Slope compensation circuit adds voltage ramp onto the SENSE voltage according to PWM pulse width. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage. Slope compensation can help S6269S obtain the same output current in universal ac input voltage.

#### **Gate Drive**

The GATE pin of S6269S has 300mA of sinking and 150mA of sourcing current capability. Therefore, the MOSFET would be turned on slowly and turned off fast so that S6269S has high efficiency and low radiation EMI. The highest voltage of drive voltage is clamped at 12V.

#### **Protection Controls**

S6269S has comprehensive protection functions, including Cycle-by- Cycle current limitation (OCP), Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on VDD (UVLO), Over Temperature Protection (OTP).


#### **Current limitation compensation**

To obtain the same output current capability, the OLP threshold voltage is compensated for the different input AC voltage. This function makes the current of OLP is in consistency whatever the AC input is (110V or 220V).

# SemiEnergy Limited Current mode PWM controller

# **Package Information**

## SOP-8



| SYMBOL  | MILLIMETER |      | INCHES |        |           |       |
|---------|------------|------|--------|--------|-----------|-------|
| STWIDOL | MIN        | NOM  | MAX    | MIN    | NOM       | MAX   |
| Α       | -          | -    | 1.75   | -      | -         | 0.069 |
| A1      | 0.1        | -    | 0.25   | 0.04   | -         | 0.1   |
| A2      | 1.25       | -    | 131    | 0.049  | -         | -     |
| С       | 0.1        | 0.2  | 0.25   | 0.0075 | 0.008     | 0.01  |
| D       | 4.7        | 4.9  | 5.1    | 0.185  | 0.193     | 0.2   |
| E       | 3.7        | 3.9  | 4.1    | 0.146  | 0.154     | 0.161 |
| Н       | 5.8        | 6    | 6.2    | 0.228  | 0.236     | 0.244 |
| L       | 0.4        | -    | 1.27   | 0.015  | -         | 0.05  |
| b ,     | 0.31       | 0.41 | 0.51   | 0.012  | 0.016     | 0.02  |
| е       | 1.27 BSC   |      |        | (      | 0.050 BSC |       |
| у       | /- )       |      | 0.1    | -      | -         | 0.004 |
| θ       | 0°         | -    | 8°     | 0°     | -         | 8°    |